Short-term changes in xylem N compounds in Lolium perenne following defoliation.

نویسندگان

  • B Thornton
  • J H Macduff
چکیده

Previous studies have indicated that an increased asparagine to glutamine ratio (Asn : Gln) occurs in the xylem fluid of Lolium perenne 24 h after defoliation. However, the absolute changes in Asn and Gln leading to the increased Asn : Gln ratio are unknown. The present study tested the hypotheses that: (1) defoliation-induced changes in xylem amino acid composition occur in L perenne within the first 24 h following defoliation, irrespective of phasing with respect to the diurnal light/dark cycle; and (2) the increase in Asn : Gln ratio in the xylem fluid of L perenne following defoliation is due to an increase in Asn content. Plants of L perenne L. 'Aurora' were grown in flowing solution culture for 40 d. Plants were then either left intact, defoliated at the end of the light period or defoliated at the end of the dark period. 15N-labelled NO3- was supplied following defoliation to discriminate between the recovery of N absorbed prior to, and following, defoliation. Xylem samples were collected over the subsequent 24 h period with amino acids speciated by GC-MS. There was support for the first hypothesis: increased Asn : Gln ratios occurred within the first 24 h, irrespective of the phasing of defoliation with respect to light/dark cycles. The second hypothesis was not supported: the concentration of all amino acids in the xylem exudate declined after defoliation, and the increased Asn : Gln ratio was accounted for by a disproportionately large reduction in Gln levels. Low concentrations of amino acids in the xylem of defoliated plants precluded accurate discrimination of their nitrogen content into pre- and post-defoliation sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of a stay-green mutation on plant nitrogen relations in Lolium perenne during N starvation and after defoliation.

The stay-green mutation of the nuclear gene sid results in inhibition of chlorophyll degradation during leaf senescence in grasses, reducing N remobilization from senescing leaves. Effects on growth of Lolium perenne L. were investigated during N starvation (over 18 d) and after severe defoliation, when leaf growth depends on the remobilization of internal N. Rates of dry mater production, part...

متن کامل

Plants Modify Biological Processes to Ensure Survival following Carbon Depletion: A Lolium perenne Model

BACKGROUND Plants, due to their immobility, have evolved mechanisms allowing them to adapt to multiple environmental and management conditions. Short-term undesirable conditions (e.g. moisture deficit, cold temperatures) generally reduce photosynthetic carbon supply while increasing soluble carbohydrate accumulation. It is not known, however, what strategies plants may use in the long-term to a...

متن کامل

Impact of defoliation intensity and frequency on N uptake and mobilization in Lolium perenne.

The aim of the study was to evaluate the impact of defoliation intensity, defoliation frequency, and interactions with N supply on N uptake, N mobilization from and N allocation to roots, adult leaves, and growing leaves. Plants of Lolium perenne were grown under two contrasted N regimes. Defoliation intensity treatments consisted of a range of percentage leaf area removal (0, 25, 50, 75, or 10...

متن کامل

Depletion of carbohydrate reserves limits nitrate uptake during early regrowth in Lolium perenne L.

The mechanisms linking C/N balance to N uptake and assimilation are central to plant responses to changing soil nutrient levels. Defoliation and subsequent regrowth of grasses both impact C partitioning, thereby creating a significant point of interaction with soil N availability. Using defoliation as an experimental treatment, we investigated the dynamic relationships between plant carbohydrat...

متن کامل

Does gibberellin biosynthesis play a critical role in the growth of Lolium perenne? Evidence from a transcriptional analysis of gibberellin and carbohydrate metabolic genes after defoliation

Global meat and milk production depends to a large extent on grazed pastures, with Lolium perenne being the major forage grass in temperate regions. Defoliation and subsequent regrowth of leaf blades is a major and essential event with respect to L. perenne growth and productivity. Following defoliation, carbohydrates (mainly fructans and sucrose) have to be mobilized from heterotrophic tissues...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 89 6  شماره 

صفحات  -

تاریخ انتشار 2002